Простая защита от короткого замыкания всего на одном реле

Сечение провода

Существуют определенные требования пожарной безопасности, которые определяют все нюансы выбора автомата для электропроводки с учетом сечения провода. Отметим, что однофазовая сеть применяется для освещения и розеток, и она имеет напряжение 220 В. в тоже время, если формируется раздельные сети, которые определяют наличие электропередач проходящих по улице, то в данном случае формируется напряжение в 380 В.

Существует разработанная таблица, в которой можно будет найти описание величины длительно допустимого тока для различных проводников с различным сечением. Под данные провода сечения подбираются и параметры автомата.

Простая защита от короткого замыкания всего на одном реле

Виды коротких замыканий

Рассматривая трёхфазные электрические сети и аварийные режимы в них, можно выделить следующие возможные виды короткого замыкания:

  1. трёхфазное – три фазных провода замыкаются между собой;
  2. однофазное – электрическое соединение фазного провода с земляным, нейтральным или токопроводящим элементом, которые присоединены к земле;
  3. двухфазное – замыкание двухфазных проводов с разным потенциалом между собой;
  4. двухфазное замыкание на землю – это два любых фазных провода с током замыкаются между собой и прикасаются к земле или заземлению.

Замыкание внутри электрических устройств и оборудования – это процесс, идентичный КЗ, но происходит он из-за ухудшения изоляции внутри электрических машин и чаще всего требует замены статорной или роторной обмотки. Внутри электрических машин короткое замыкание может быть двух типов:

  1. межвитковое, снижающее сопротивление обмоток до критического значения;
  2. замыкание обмотки на корпус, который изготовлен из токопроводящего материала.

Простая защита от короткого замыкания всего на одном реле
Виды КЗ

РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:

Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:

Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.

Originally posted 2018-11-23 07:09:50. Republished by Blog Post Promoter

Выбор автоматических выключателей

При замене старого автоматического выключателя новый устанавливайте на тот же номинальный ток. По требованиям Энергосбыта номинальный ток выключателя принимается, исходя из максимально разрешенной нагрузки.

Распределительная сеть устроена таким образом, что с приближением к источнику электроснабжения номинальные токи аппаратов защиты увеличиваются. Если ваша квартира включена через однофазный автоматический выключатель на 16 А, то все квартиры в подъезде могут быть подключены к трехфазному автомату на 40 А и равномерно распределены по фазам. В случае, если при коротком замыкании ваш автомат не отключится, через некоторое время от перегрузки сработает защита у подъездного. Каждое последующее защитное устройство резервирует предыдущее. Поэтому не стоит завышать значение номинального тока автоматического выключателя. Он может не сработать (не хватит тока) или отключится вместе с группой потребителей.

Популярные статьи  Вязаная аппликация крючком &quot

Современные модульные автоматические выключатели выпускаются с характеристиками «В», «С» и «D». Отличаются они кратностью токов срабатывания отсечки.

Характеристика

Кратность тока отсечки

Применение

D 10 — 14 Iном Электродвигатели
В 2 — 5 Iном Конечные потребители без пусковых токов
С 5 — 10 Iном Во всех остальных случаях

Будьте внимательны с применением автоматов с характеристиками «D» и «В».

И помните: если короткое замыкание не отключить, оно приведет к пожару. Позаботьтесь об исправности защиты, и живите спокойно.

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Ну вот, как и обещал – вторая статья, которая посвящена системе защиты от переполюсовки, которое нашло довольно широкое применение в промышленных и самодельных зарядных устройствах. Данный вариант был выбран как особо простой и может быть повторен даже человеком, который никак не связан с электроникой.

Для реализации такой схемы защиты вам нужен только диод – всего один диод, который будет установлен в прямом направлении на плюсовой шине зарядного устройства.

Такая система на только проста, что для доработки зарядного устройства, его совсем не обязательно разобрать. Для реализации такой идеи мы используем самую главную функцию полупроводникового диода – в прямом направлении диод открыт, если же его подключить в обратном направлении, то он будет заперт.

Следовательно, если вдруг спутать полярность, то ток просто не будет идти, никаких хлопков, нагрева и прочих дымовых эффектов.

Но как мы знаем, когда напряжение протекает через переход выпрямительного диода, то на выходе последнего будет спад напряжение в районе 0,7 Вольт, именно для того, чтобы спад был минимальным, мы будем использовать диоды ШОТТКИ (с барьером Шоттки) – на нем спад напряжения в районе 0,3-0,4 Вольт. Единственный недостаток такой защиты заключается в том, что через диод будет течь довольно большой ток, что приводит к нагреву диод.

Для того диод обязательно нужно установить на теплоотвод. Диоды шоттки с больим током можно найти в компьютерных блоках питания. Диоды в указанных блоках из себя представляют трехвыводную диодную сборку, в каждой сборке два диода с общим катодом. Нужно подобрать диоды с током не мене 15 Ампер на каждый диод. В компьютерных блоках могут встречаться диоды с током до 2х30 Ампер.

Для начала нужно установить диод на теплоотвод, затем запараллелить аноды диодов, таким образом, мы соединили параллельно оба диода.

Когда ваше устройство не постоянно питается от блока питания, а вам нужно периодически вставлять клеммы в разъём, особенно часто это бывает с зарядными устройствами для аккумуляторов. Возникает вероятность случайно перепутать клеммы. Описанная схема на диодном мосту станет надёжной защитой от переполюсовки и индикатором вашей нечаянной ошибки.

Какие преимущества дает УРОВ?

Изначально УРОВ, в виде панели с электромеханическими реле, применялось на подстанциях и станциях с РУ 220 кВ и выше. Его применение обусловлено повышенными требованиями к надежности отключение короткого замыкания за наименьший промежуток времени.

Представьте, что на линии 220 кВ, в соответствии с принципом ближнего резервирования, установлены комплекты основной (ДФЗ) и резервных защит (ДЗ, ТЗНП, ТО), и все это бесполезно из-за механической неисправности привода выключателя. Сигнал на отключение защитами выдан, но ничего не происходит, и линия продолжает «гореть».

Остается надежда только на защиты дальнего резервирования, которые установлены на противоположных концах соседних линий.

По требованию дальнего резервирования эти защиты обязаны чувствовать КЗ на смежной лини и устранять их. Но во-первых, выдержки времени в этом случае могут быть достаточно большими (особенно, если ДЗ или ТЗНП начинают чувствовать КЗ только после отключения некоторых параллельных линий). А во-вторых, дальнее резервирование удается обеспечить не всегда. К тому же при действии защит дальнего резервирования происходит отключение множества выключателей на разных подстанциях, что затрудняет работу диспетчера при локализации аварии.

В таких случая, требуется меры по усилению ближнего резервирования, т.е. установке устройства резервирования при отказе выключателя.

Популярные статьи  Лобзиковый станок из швейной машины

УРОВ принимает команду отключения выключателя от защит и если через время Туров отключения не происходит, то устройство дает команду на отключение смежных выключателей. Просто и надежно

При этом время отключения от УРОВ всегда определено как сумма времени действия собственной защиты присоединения плюс ступень селективности. К тому же УРОВ «использует» чувствительность своей защиты, которая выше, чем у защиты дальнего резервирования.

На напряжении 110 кВ и ниже УРОВ использовался реже из-за стоимости панели и отсутствия жестких требований к скорости отключения, как на сверхвысоком напряжении. Ведь панель УРОВ стоит денег и занимает место.

Однако, с развитием микропроцессорной техники функция УРОВ стала практически бесплатной. Распределенный алгоритм УРОВ стал использоваться в логике терминалов, а «снаружи» остались только шинки и ключи ввода/вывода. Сегодня УРОВ применяют на всех классах напряжения, начиная с 6 кВ.

Давайте рассмотрим, что дает УРОВ на стандартной подстанции по схеме «6-1» (одна секционированная система шин 6 кВ).

1 случай (удаленное КЗ на линии 1)

При возникновении короткого замыкания на линии 1 в зоне действия МТЗ (конец линии), защита срабатывает с выдержкой времени 0,9 с. При отказе выключателя алгоритм УРОВ отключит вводной выключатели через время Тзащ. = Тмтз + Туров = 0,9 + 0,3= 1,2 с.

Если алгоритм УРОВ отсутствует, то МТЗ ввода отключит КЗ через 1,5 с (дальнее резервирование).

Таким образом, мы получаем выигрыш 0,3 с.

Также обратите внимание, что здесь для пуска алгоритма мы используем МТЗ линии, а не ввода, что дает значительно большую чувствительность. Особенно сильна эта разница будет для секций 6 кВ с двигателями

2 случай (близкое КЗ на линии 1)

При возникновении короткого замыкания на линии 1 в зоне действия отсечки (начало линии), защита срабатывает с выдержкой времени 0,1 с. При отказе выключателя алгоритм УРОВ отключит вводной выключатели через время Тзащ. = Тто + Туров = 0,1 + 0,3= 0,4 с.

По дальнему резервированию мы так же получим 1,5 с, т.е. теперь выигрыш уже 1,1 с.

Очевидно, что и на 6 кВ применение УРОВ дает преимущество в быстродействии и чувствительности

При всех своих плюсах УРОВ — достаточно «опасная» функция и применять ее нужно обдуманно. Следует помнить, что при срабатывании УРОВ полностью отключает участок сети с блокировкой любой автоматики восстановления питания, такой как АПВ и АВР. Это означает невозможность быстрого восстановления нормального режима и массовый недоотпуск электроэнергии (особенно если нижестоящие потребители не имеют своих АВР).

В связи с этой особенностью при пуске УРОВ, помимо контроля тока через выключатель, применяют различные способы ограничения возможности излишнего действия.

О логике и схемах УРОВ мы поговорим в следующей статье

Автомат защиты от короткого замыкания

Почему я вынес это отдельным пунктом? Все просто. Именно автомат обеспечивает защиту от короткого замыкания. Если вы установите УЗО, то обязательно, следом нужно поставить автомат, или поставить сразу дифавтомат (это устройство два в одном: УЗО и автомат). Такое устройство отключает сеть и при коротком замыкании, и при превышении номинального значения тока, и при токе утечки, когда, к примеру, вы оказались под напряжением, и через вас стал протекать электрический ток. Напомню еще раз: УЗО НЕ ЗАЩИЩАЕТ ОТ КОРОТКОГО ЗАМЫКАНИЯ, УЗО защищает вас от поражения электрическим током. Конечно, может быть и такое, что УЗО отключит сеть при коротком замыкании, но оно для этого не предназначено. Срабатывание УЗО при коротком замыкании носит абсолютно случайный характер. И может сгореть вся проводка, может быть все в пламени, а УЗО не отключит сеть.

Используя все эти меры и рекомендации вы сведете к минимуму возможность возникновения короткого замыкания и проживете долгую и счастливую жизнь!

<- Предыдущая страница
Следующая страница ->

Схемы защиты от КЗ

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты  от переполюсовки питания и от Кз (короткого замыкания). Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.В этой статье будет рассмотрено 3 варианта схемы защиты бп  от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Модель защиты 1

Это схема защиты бп наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Схема универсальная 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

Популярные статьи  Творожный сыр в домашних условиях

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант простой 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Анализ схемы защиты бп

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Прикрепленные файлы: zashita_ot_perep

Зачем нужен автомат для проводки?

Каждый человек понимает, что стоимость современного оборудования – стиральной машины, холодильника или же утюга – достаточно существенна, именно по этой причине, такие элементы должны быть надежно защищены. Повышение значение тока в сети может стать основой поломки таких приспособлений. так вот, именно автомат является основным элементом защиты, так как при повышение уровня тока, он формирует отключение всей системы электричества, что фактически, становится защитой всех приспособлений от негативного воздействия тока повышенной мощности.

Но, если копнуть более углубленно, то автомат рассчитан на защиту электропроводки, а не приборов. Если возникают какие-то поломки проводки, то размыкание цепей становится основным элементом защиты от многих негативных факторов, включая ее возгорания.

Бывают ситуации, когда сила тока в сети достигает несколько тысяч ампер. По сути, никакой кабель не способен в течение существенного количества времени выдерживать такую нагрузку. При этом, следует учитывать, что в проводке электричества в домах и квартирах чаще всего используется провод сечением 2.5 кв.мм, который при таком воздействии может просто загореться, что как вы понимаете, станет причиной пожара и невероятного количества сложностей.

Соответственно, становится понятно, что автоматический выключатель – не роскошь, а своеобразная необходимость нашего современного времени, и правильный выбор данного элемента электросети имеет важное значение

Простая защита от короткого замыкания всего на одном реле

Причины и последствия обрыва нуля

С понятием обрыв нуля люди столкнулись относительно недавно – в 90-х годах. Тогда на рынке появилось огромное количество современной бытовой техники и аппаратуры, отличающейся от классической тем, что при включении таких приборов с различными величинами сопротивлений, выбрасывались дополнительные импульсные токи в электрическую сеть, которые не компенсировались в средней точке. Это приводило к накоплению превышающего или равного тока одной из фаз на нулевом проводнике, что способствовало перегрузке нулевого провода.

Ноль отгорает, в основном, в плохо обжатом контакте – так называемом слабом месте.

Простая защита от короткого замыкания всего на одном реле Обрыв нуля может произойти, если в доме есть старая проводка

Основные причины обрыва нуля:

  • Скачек напряжения или короткое замыкание;
  • Плохое качество подключения проводов или слабый контакт;
  • Стихийное повреждение линий электропередач;
  • Халатность при проведении ремонтных работ;
  • Старая проводка, которая, вдобавок, сильно греется при современных нагрузках.

Для установки местоположения поврежденного проводника, вы можете воспользоваться специальным прибором-тестером, при помощи которого можно определить точное положение разрыва даже под слоем штукатурки, либо применить метод визуального осмотра разводного щитка в квартире. Возможно, причина кроется именно там и легко устраняется. Если же обрыв нуля произошел вне зоны вашей квартиры, здесь не стоит проявлять самодеятельность и самому устранять неполадку. Следует незамедлительно обратиться в соответствующие службы, которые быстро, квалифицированно и без последствий устранят причину и уберегут жителей от нежелательных последствий.

Заключение

Короткое замыкание возникает в результате повреждения проводников или электрических приборов, их некорректного подключения или перегрузке сети. Последствия в данной ситуации могут быть самые разнообразные: от простой поломки прибора до возникновения пожара или поражения людей током. В профилактических целях, предупредить замыкание можно, используя правильные предохранители, а так же кабели с подходящим сечением. Будьте внимательны при выполнении ремонтных работ. Не допускайте механического повреждения проводки, тщательно изучайте необходимые схемы энергетических систем в вашем жилище. Если ко всему подходить с умом — проблем с коротким замыканием не возникнет и тогда не потребуется его устранять.

Оцените статью
( Пока оценок нет )
Добавить комментарий